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Abshnct I siudy theoretically and numerically the conductance of a 1D mesoscopic ring in 
the localized regime. explicitly taking account of the four-probe nahlre of measurements. I 
show that a number of effects ean arise tbat are absent from conventional theories of rings 
based on G = (2ez/h)T: h/2e and higher Fourier components appear even in the absence of 
elemon hajectories that encircle the ring. The sign of the conductance can change periodically 
with the applied field, while the typical relative magnitude of the conductance oscillations may 
be highly sensitive to the arrangement of the probes. I also show that for samples sufficiently 
disordered the Aharonov-Bohm oscillations in the conventionally measured conductance vanish; 
a non-local conductance remains strongly flux sensitive. 

1. Introduction 

A consequence of the phase-coherent transport encountered in suhmicrometre devices in the 
so-called mesoscopic regime is the need to take into account the full geometry of the device, 
even in regions away from the classical current path [l-31. Hence a full understanding of 
measured electrical conductances requires a formalism that explicitly takes into account 
the four-probe measuring techniques conventionally used. Several interesting effects that 
depend on multiprobe measurements have been observed, including the enhancement [4,5] 
of the universal magnetoconductance fluctuations [6-81 when the voltage probe separations 
are smaller than a dephasing length and the negative bend conductance of crossed wires [9, 
101, while the quantum Hall effect has also been related to multiprobe formulae [ l l ,  121. 
Recently it has been predicted that the longitudinal conductance of a superconducting wire 
may he negative even in the localized regime [13], and that the conductance of such a wire 
may reverse sign on switching on superconductivity or changing an applied magnetic field 
[14]. The pupose of this work is to highlight some further consequences of multiprobe 
measurements that appear for Aharonov-Bohm (AB) loops. 

Although previous work on small rings has acknowledged that four-probe effects must be 
taken into account, consideration of this aspect has usually been confined to the observation 
that the conductance need not be symmetric with respect to sign reversal of the magnetic 
field because an off-diagonal Onsager coefficient is being measured [15, 161. Beyond that, 
studies usually assume that the conductance is proportional to the transmission through 
the sample, G = (2e2/h)T, which is correct for two-probe measurements [17], although 
DiWncenm and Kane successfully used a multiprobe formalism to compute the typical 
magnitude of the AB oscillations in loops [18], while Ford et a1 have studied crossed wire 
systems including a system with a dot in the centre that has the topology of a ring [19]. 
Here I compute the longitudinal, bend, Hall and non-local conductances for a ring in the 
localized regime using the exact multiprobe expression derived in [l, 21. I show that novel 
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effects arise which are missed by calculations based on G = (2t?/h)T : depending on the 
arrangements of the probes, the sign of the conductance can vary periodically with applied 
field; the relative magnitude of the oscillations as a ratio of the typical conductance for 
a given ring may be sensitive to which conductance is measured; and h/2e  and higher 
components may appear due to the complex nonlinear relationship between G and the 
various transmission coefficients in the system, even in the strongly localized case, for 
which contributions to transport from the weak localization effect [22] and transport paths 
that encircle the ring are negligibly small so that the two-probe conductance contains no 
higher components. A further consequence is that the conductance most sensitive to AB 
effects is not the longitudinal conductance GL conventionally measured, but a non-local one, 
which can be strongly flux dependent even when GL is effectively constant. In view of the 
complexity of the relationship between transport coefficients and multiprobe conductances, 
this work is confined to an analysis of single-channel wires at zero temperature and small 
applied voltages. 

4 

4 
Figure 1. DiffeRnt four-probe pomeuiw: (a) the mnventional experimental arrangemeng @) 
probes d M y  auached to ring, (c) probes direcily attached and paired up, (d) probes directly 
attached and arranged at right angles around ring. The numbers label the probes. 

The usual experimental arrangement for examining the Aharonov-Bohm effect in 
mesoscopic rings features two diametrically opposite connections (shown in figure I(a)). 
A short distance away from the ring the connections each split into a current and a voltage 
probe [16]. Here I wish to address the question of what happens if the positions of the probes 
are varied. Accordingly I will examine rings such as that in figure I@), in which the current 
and voltage probes are diredy attached to the ring. For ow purposes the arrangement of 
figure l(a) can he regarded as a special case of figure I(b), for which the probes are paired 
up and d iameeidy  opposite (figure I(c)). 

I will consider the case in which there is substantial localization along the ring, but the 
probes are clean. For this case the direct transmission amplitude along a path of length 
L,, along the ring can be written as rmn = exp(-Ltnn/&,,n) expi8,, where according to 
single-parameter scaling 120, for a recent review covering this area see 211 c,,,. is taken 
from a Gaussian distribution with mean 

Ingeneral, for an AB loop, weexpect G(@) =  GO+^,=^ ,_,,, ,8Gncosn(@/@0+8.), 
with a similar expression for the resistance R, where @ is the flux through the ring, @o 
is the flux quantum h/e and the 0. are phase angles that are chosen to ensure all the 
6Gn are positive. Terms for successively higher values of n involve paths in which the 

and 8," is the phase associated with the path. 



AB loops and multipmbe measumments 6677 

electrons encircle the ring multiple times. Hence in the localized regime these terms 
decay exponentially with n, and only the first terms Go and 6G1 are significant. I will 
develop a theory based on the typical behaviour of the relative magnitude of the fluctuations, 
irrespective of the phase. This implies considering ensemble-averaged components of the 
conductances. It should be noted however that this is distinct from the averaging procedure 
commonly employed, in which (G(@)) is directly computed as a function of @: for that 
case, all components with odd n average to zero, whilst those with even n do not due 
to weak localization effects [23-29]. Hence, even if SGI dominates for a single sample, 
this is not the case after averaging. However, since we are studying the magnitudes of the 
respective Fourier components, such averaging to zero does not take place and it is therefore 
correct to consider only the h/e oscillations in the transmission probabilities. Subsequent 
computer simulations will examine how the conductances behave in practice for individual 
samples. 

2. Theory 

We may obtain the flux dependence of the transmission amplitude by writing it as a 
Feynmann sum over paths. This method of analysis has been used to describe wire networks 
in [31-331. Since we are interested in the localized limit we ignore contributions from long 
paths encircling the ring, and since we will be interested only in the orders of magnitudes of 
the contributions from different trajectories, we neglect the numerical factors introduced by 
scattering at the nodes. As an example consider the transmission amplitude tzl from probe 
1 to probe 2 of figure l@). We use subscripts yl and y2 to respectively label the upper and 
lower paths round the ring, and on summing over direct paths deduce 

where A is the magnetic potential corresponding to a flux @ threading the ring. Hence 

T = lt211' = exp (-2LY1/ty1) + ~ X P ( - ~ L , Z / E ~ Z )  

+ ~ ~ X P ( - L , I / ~ ~ I  - L ~ z / ~ ~ z )  cos(eyl -ey2 + @/@d. (2) 
This expresses the intuitive result that the typical magnitude of the transmission probability 
is essentially determined by the individual path having the lqest  transmission amplitude, 
while the Aharonov-Bohm oscillations are of the order of the product of the transmission 
probabilities around each arm of the ring. A consequence of this formula is that the AB 
effect is most apparent when both arms have transmission amplitudes of roughly equal 
magnitude. Thii can be seen if we assume that L y l / c y l  < LY2/Eyz, so that the second term 
in (2) may be neglected, and 

T = ~ X P ( - ~ L , ~ / E ~ I )  [I + 2exp (- ( L ~ z / ~ ~ L ~  - L ~ I / ~ , I ) )  COS(~,I - eyz + @/@o)]. (3) 
Hence the relative conductance fluctuation SG1/Go is of order exp(-(Lyz/<yz - LY1/Ey~)). 

for different segments of the ring will be independent random 
numbers taken from a normal distribution. Although on averuge the transmission amplitudes 

In general the different 
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will decay exponentially with path length it is quite possible for a longer path to have a 
higher amplitude than a shorter one. However, taking into account the full distribution 
of the 5 in the multiprobe conductance formulae would severely complicate the theory. 
Since OUT aim is to develop a tractable theory that may be used to develop a physical 
understanding of multiprobe measurements on rings, we will assume instead that it is 
possible to approximately replace the .$j by a single value .$. While this appears unrealistic, 
subsequent computer simulations will show that it does give a useful first approximation. 
We also note that OUT model does correctly describe the case for which localization results 
from tunnelling through a potential barrier without disorder. 

We consider first the longitudinal conductance G L  of the ring. In the localized limit 
this result would be expected to give similar results to a two-probe measurement [2, 131. 
To show this explicitly, we consider figure l(c) and define the four-probe conductance 
GL = Gj&lm = Zj/S - V, subject to 1, = -4, Zl = I, = 0, where l j  is the current 
flowing into the device from probe j and 5 is the potential on reservoir j. This quantity 
was shown by Biittiker [I, 21 to be given by the expression 

Gjk,lm = D/(EjTmt - Tmjzk) (4) 
where the quantity D is independent of which probes are chosen to supply the current and 
is given by 1131 

D=fizTuT34+ZzT~4T34+Ti3T~iT34+fi4T2iT34 

fTizTwT31 + T I z T z ~ T ~ z  + T34T13Tu + TwTi3Tw 

+TziTd" + Tz1fi4Tsz + T34T14Tz + T M T M T ~  

+ T I ~ T N T ~ Z  + T14T23T31+ Tid"z4T31+ G4TwT3z. (5) 
We now note that for the arrangement of figure l(c) the transmission probabilities in (5) 
can be divided into two types. Those involving transmission between probes on opposite 
sides of the ring, e.g. Z3 and Tx, have the form 

T j k  = eXp(-L/g) a j k  + bjk COS - f 6jk (6) 

where L is the total circumference of the nng, a j k  and bjk are real positive constants of 
order unity which take account of any slight asymme&ies between the quadrants of the ring, 
and 6 j k  is a phase angle. By contrast, transmission coefficients between adjacent probes 
have the form 

( C O  >> 
Go T j k  = aik + Y k  cos - + 6' exp(-L/e). (7) 

We will also consider transmission between probes situated at right angles around the ring, 
for example probes 1 and 4 in figure I(d). This yields the form 

q k  = exp(-L/2{)[a$ + b$ cos - + 6s exp(-LM)J. (8) 

Since we are interested in the relative orders of magnitude of the typical conductance and 
of the Aharonov-Bohm oscillations we need to find the respective field-independent term 
and field-dependent term in G of the highest magnitudes. We use the generic symbols 
A, 0 and R to represent transmission probabilities between adjacent probes, diametrically 
opposite probes and probes situated at 90" respectively. Now D is the sum of 16 terms, 
of which four are of the form M U ,  eight are of the form A80 and four are of the form 
000. The largest field-independent contributions come from the M O  terms and are of 

G > 
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order exp(-L/f), as do the largest field-dependent contributions. Terms in cos2(@'/@o) 
are exponentially smaller. For the conventional experimentaI arrangement, the quantity 
measured GL = G13.24. hence the denominator becomes Tz1T43 ~ T41Tu, which is of the 
form RA- 60. This has largest field-independent and fielddependent terms of respective 
orders unity and exp(-L/c). We deduce that 

- exp (--L/g) [c5 + C6cos(@/@O + el)] (9) 

where the cj are constants of order unity. We may now apply the above reasoning to 
different arrangements of the probes. We consider first the situation of figure l(c), but for 
which the conductance measured is the non-local conductance GN = G12.34. Then D is 
unchanged, but the denominator becomes T31T42 - T41 T,, which is of the form 06 - 00. 
Since both terms are of equal magnitude, the result may be positive or negative. Assuming 
that the denominator is non-zero, which will essentially always be. true due to asymmetries, 
we find 

This expression is not a simple sinusoidal form, and implies that even if GN never diverges, 
it will contain higher h/2e and higher-frequency components. We stress that OUI model 
explicitly excludes all weak-localization contributions to the transmission coefficients and 
that therefore the existence of these higher components is due entirely to the nonlinear 
relation contained in (5). We also note that the non-local conductance increases with 
disorder because an exponentially large current must flow in the current probes in order 
to exactly cancel any current supplied from the voltage reservoirs. 

Now we consider the arrangement of figure I(d), for which the probes are arranged 
at right angles around the ring. Here D is sum of 16 terms, of which four are of the 
form RRR, eight are of the form R'RU and four are of the form ROO. The largest 
field-independent tems come from the RRR terms and are of order exp -3L/25, while 
the highest field-dependent terms originate from the 'RR'R and RRO terms and are of 
order exp -2L/e. We are interested in the order of magnitude of the bend conductance 
Gg = G12.43 and the Hall conductance GH = G13.24. For the bend Conductance, the 
denominator is of the form RR - 00, so that 

G12.43 - exp (-L/26) [cg + CIO exp ( - ~ / 2 t )  COS(W@O + e,)] . (11) 

We note that the AB oscillations are of the same order of magnitude as for the usual 
longitudinal arrangement, but that they are now swamped by the much larger mean 
conductance. On the other hand, for the Hall conductance the denominator is of the form 
RR - RR, so that the conductance may be of either sign. Assuming the terms in the 
denominator do not exactly cancel, we obtain 

G13.24 - +exp ( - L / W  [CU + CIZ exp ( - L / X )  COS(Q/QO +e5)] . (12) 

For the Hall and non-local conductances, the question immediately arises of whether the 
sign of G for a given sample is fixed or whether it can be changed by changing the flux 
through the loop. We now present the results of computer simulations that show that the 
sign can in fact vary with applied flux. 



6680 S J Robinson 

3. Siulatiom 

In order to test how the above order of magnitude calculations apply in practice, we 
performed simulations of disordered rings. The disorder was inaoduced via a piecewise 
constant potential aronnd the loop: the total loop circumference was taken as 4 x 104/kp, 
(kF = inverse Fermi wavevector) and was divided into 400 cells of equal length. Within 
each cell the potential (relative to the Fermi energy EF) was chosen randomly kom a uniform 
distribution centred on zero and of width 2V (V measured in terms of EF),  with V = 0.9. 
The transmission probabilities between the various probes were calculated using the S 
matrix reduction algorithm described in [33]. This algorithm yields the exact transmission 
probabilities including all possible contributing paths. In all cases, the plots shown are the 
i%st 10 produced on the computer, but further simulation results were checked to ensure 
the presented plots were typical. 

O*lO' l*lo-nj-! y----y; 
0*10' 

0 1 0 1 

*/a, 
Figure 2. Dpical plots of the longiludi conductance for 10 different realizations of disorder 
with V = 0.9. 

Figure 2 shows 10 plots of the GJ., varying over two cycles of flux (zero to 2h/e), and 
confirms that GL behaves essentially as the the two-probe conductance. In particular, the 
curves are sine waves with no evidence of higher-frequency components. Figure 3 presents 
the non-local conductances of the same samples, and we see immediately that sign changes 
not only do occur, but are extremely common. Only two out of the 10 results shown failed 
to reverse sign and both show higher-frequency components (the plots are not sine waves). 
The sign changes occur via a singularity in G bemuse it is the denominator of (5) that can 
vanish due to cancellations. Bend and Hall conductances for new samples are shown in 
figures 4 and 5. We note that the Hall conductance reverses sign, though not nearly as often 
as the GN. Where sign changes do not occur, the AB oscillations are often very weak in 
agreement with (12). On the other hand, G g  behaves very differently from the prediction 
of (11): although usually positive, it can reverss-actually doing so more readily than GH 
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5 ' 0 . m  m 2 ; 1 i 3 1 s  

-5.;10: 

-540' 5*10 Izz3 Ez514*1010 -4.19' 

l * l o 3 m  JrUnCl':*:O* GN 

-1*109 

5 * 1 0 6 m  

OalOo l * l o 8 m  ):CJnU31::,: 
-1.10' 

0 1 0 1 

*/eo 
Fipure 3. Plots of the non-local conductance for the same reabwions of disorder as for figure 2. 

for the systems studied, although it is not clear whether this is simply a statistical fluke. 
The AB oscillations are suppressed slightly in comparison to G~-this is more apparent in 

0.005 m 
0.0 - 

l o o 0 h l  0 

2.10' 

P E E ,  -2*105 

-0.4 

0 1 0 1 

a/*, 
Figmt 4. % i d  plots of the bend conductance for 10 different realizations of &ordm with 
V = 0.9. (NB &se are different samples from those of fiw 2 and 3.) 
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figures 6 and 7. in which the longitudinal and bend conductances are plotted for the higher 
disorder V = 1.0. The figures also clearly show how much more sensitive the non-local 
(and occasionally the bend and Hall) conductance is than GL to the flux: several of the plots 
in figures 2 and 6 show no discernible oscillations while the corresponding GN fluctuate 
strongly. The GN for V = 1 are not shown, but behave similarly to those of figure 3. 

* O * 1 O 1 ~ 1  

-2r10-; 

0*10; 

5*10- r= - l ; l  

0.0)) c" GH -5r10-' 0*1° rT0'004 0.0 

-0.01 0 . 0 0 5 j  m 5 y * : 1 0  

0.0 
0 1 0 1 

@/a 
Figure 5. Plots of the Hall mnductance for the same " t i o n s  of disorder as for figure 4. 

To understand why our order of magnitude theory fails in these cases we need to 
allow for the effects of the localization length varying. We consider first Gg, which has a 
denominator of the form 'R'R - 00. Now although the 77, transmission probabilities are 
typically exponentially smaller than the 60 ones,this is not always the case. If we assume 
that each log T has a normal distribution with mean value and variance of the same order 
of magnitude, and that the mean of the dis~bution for U-type transmission probabilities 
is twice that for %type probabilities, we immediately see that there is a finite chance of 
the R'R and U0 terms being of the same order of magnitude, so that cancellations and 
near cancellations in the denominator can occur. This explains the simulated behaviour 
of GB. On the other hand, GL has an dd - U6 denominator. The A-type transmission 
probabilities will have magnitude - unity, so that they will almost always be greater than 
the U terms, and hence (9) accurately describes GL. 

To explain why GN is more susceptible to sign changes than GH although both have 
similar symmetries, we note that for GH, due to the differing localization lengths for different 
segments of the ring, in practice one of the 'R'R terms in the denominator of (4) will usually 
be larger than the other by at least an order of magnitude. However, expression (2) shows 
that the individual vary only weakly with @. Hence one of the U0 terms remains the 
dominant one throughout the range of @ and the majority of samples do not show sign 
changes, although GH is equally likely to be positive for all 0 or negative for all @. On 
the other hand, the denominator of GN is T31T42 - T41T32. Now since probes 1 and 2 are 
adjacent, we have that FX T32 and GI % T42. so that the two terms are of roughly 
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0*100- '00110' 

2*10-4- 

0*100 l * 1 O l m  ~ l . l o - '  

-1110' o.lm ,----/E.' 
4*10- 0*10* m 0 - 1  

0 D: 1 

G, 

O.! 

*/Go 
Figure 7. As figure 4, but for V = 1.0. 

equal magnitude. Hence sign changes occur much more readily as @ is varied. The above 
reasoning was confirmed by examining the individual cj calculated during the simulations. 
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4. Discussion 

We have shown how it is possible to obtain a qualitative understanding of the various 
multiprobe conductances of an AB ring by considering the orders of magnitudes of the 
various terms in terms in the Biittiker four-probe conductance formula for this system, and 
have predicted several effects that arise from the four-probe nature of the measurements. 
We have shown that of the situations considered the conductance most sensitive to the 
flux through the ring is not the longitudinal conductance conventionally measured, but 
the non-local conductance, Apart from the longitudinal conductance, all the conductances 
considered can change sign with the flux through the ring, and even when this does not 
happen, h/2e and higher components can be introduced although they may be absent from 
the corresponding two-probe measurements. 

This work is not the first to point out sign changes in multiprobe conductances: these 
have been observed in wires coupled by a ballistic window [34] and predicted for the 
longitudinal Conductance of disordered superconducting wires [14]. The novelty of the sign 
changes noted here is that they occur in normal wires in the localized limit, and are periodic 
with the flux. 

Finally, we comment on how our results might apply to multichannel rings with a large 
aspect ratio. For such rings, (5) applies, however each Tj  is now not a simple transmission 
coefficient, but a sum of all transmission probabilities between probes i and j. Where the 
number of channels is relatively small, the h/e oscillations will continue to dominate over 
the h/2e components in the localized l i t ,  and we might expect the results of this paper 
to remain valid. On the other hand, in the limit of a large number of channels, the h / e  
oscillations and all odd harmonics will disappear from the Zj due to averaging effects, so 
that Gij,lm is periodic with period h/2e, and the behaviour of the four-probe conductances 
is less clear. Similar effects will occur as the temperature is raised [27, 281. It seems 
possible that in this case, GN, GH and GB may continue to reverse sign periodically, now 
with period h/2e,  but further work is clearly needed to clarify this. 
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